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Abstract. We have numerically solved the equation of motion for a single vortex in a resistively
shunted Josephson junction array. The vortex velogily the damping coefficient;) and the
dynamical barrier for the cell-to-cell vortex motiqix;,) are studied. In particular, we have
focused our attention on their dependence on the bias cuggint the penetration depth of the
magnetic field(1,), the vortex position(x), and the extension. The results obtained can be
described in terms of the motion of a particle subjected to a poténtiali ., 21 ), the analytical

form of which is discussed as a function of the array parameters. Under certain circumstances,
the injection of one vortex into the array may unleash a recursive process of vortex/antivortex
creation that extends to the whole array. This gives rise to the formation of a stable dynamical
state: the AVM (alternate-vortex motion), where vortices and antivortices move along alternate
rows of plaquettes.

1. Introduction

2D arrays of Josephson junctions, JJA, have been the object of intense research for the last
ten years. Besides their appeal as model systems for the study of the properties of ‘granular’
and ‘stacked’ superconductors, like the hiffhsuperconductors, they are also interesting
because of their intrinsically very rich physics. Moreover they are very promising systems
for many technological applications in cryoelectronics.

The dynamical properties of Josephson junction arrays have been extensively studied
in the past by several groups, theoretically and experimentally. Research in this field has
evolved through an increasing complexity of the models studied toward a more realistic
description of the JJA (including, e.g., the inductive effects [1]). Most of the efforts have
been mainly focused on the dynamical steady state of the array as a function of the external
field, the disorder of the array, etc [2].

Within this framework, the vortex dynamics has been studied numerically, analytically
and experimentally. In most cases the theoretical study has been performed in the context
of the sine—Gordon model, either in its continuous or discrete version, that respectively
describe a long extended junction and a 1D array of parallel-shunted junctions [3]. Coupled
sine—Gordon equations permit the modelling of the analogous 2D systems [4].

In this paper, instead, as an extension of previous work on the ladder dynamics, we
focus our attention on the study of the single-vortex dynamics in 2D arrays of resistively
shunted and overdamped Josephson junctions, described by the RSJ model. This problem
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is equivalent to the transmission of a perturbation through a system of coupled oscillators.
Taking an interest in such a study is also partially motivated by the possible use of JJA
in the development of cryoelectronics devices. Indeed superconducting networks allow
a high-speed operation under very low power dissipation and are suitable for producing
single-quantum-flux digital logic circuits [5], transistors [6], photofluxonic detectors [7],
neural circuits [8], etc. Most of these applications are based upon the controlled creation and
transmission of quantized excitations (vortices and/or antivortices), which act as information
guanta. A quantitative study of the processes of creation and propagation of the signals
is essential to the design of such cryodevices. To succeed in their reliable production one
needs to know determining factors like the velocity of transmission of the vortex/antivortex,
the scales of energy involved in the processes, and their dependence on the physical
parameters—either external (e.g. the bias current supplied to the ciggQitr intrinsic to

the array (i.e. the penetration depth of the magnetic field,

In this paper we present a detailed study of dynamical quantities such as the vortex
velocity, v, the coefficient of viscosityy, and the height of the dynamical barrier for the
cell-to-cell vortex motionE,. Their dependence on the vortex positian, the bias current
(i4c) and the screening field (parametrized X)) has been carefully worked out.

An array implies a discretization of the space—the length scale is given the cell
size—and thus an enhancement of the finite-size effects in the arrays whose dimensions,
L, andL,, are not much greater than We have studied the dependence of the dynamical
variables on the size of the array.

The dynamics of a single vortex in a 2D JJA can be described in terms of the motion
of a particle subjected to an effective 1D potenti&lx, iy, A ), the shape of which will
also be discussed in detail in this paper.

The paper is organized as follows. In section 2 we describe briefly the model used. In
section 3 we describe the results that concern the vortex velocity, the damping coefficient
and the energy barrier for the cell-to-cell vortex motion; they have all been worked out as
functions of the relevant physical parameters of the array. In this section we also discuss
the shape of the potential functidi. In section 4, we describe processes that can prevent
the use of JJA in applications strictly based upon the motion of single vortices: under
particular physical conditions (e.g. above a given value of the bias current) the perturbation
due to the presence and the motion of a vortex may induce vortex reflections at the border
of the array and even, under certain circumstances, a truly vortex/antivortex cascade. In
these conditions, at steady state, each row of the array exhibits a defined dynamical vorticity
(i.e. a dominant presence of vortices or antivortices), the sign of which alternates from row
to row: the so-called alternate-vortex motion (AVM) described in reference [9].

2. The model

For our studies we consider an ordered array with square plaquettes and one superconducting
junction per link. The dynamics of the ladder is simulated in the limit of zero shunt capacity
(i.e. the overdamped case). We also assume that the phase of the order pagarnseter
constant on each grain (i.e. we consider point grains). The dynamical equatitns: &
are [10]

3 1d . .

0 2 g @ 9 — A == D SN — ¢ — Ay) + ii(exd @

e M j
wherei, j stand for nearest-neighbour pointg(ext) = I;(ext)/I. is the external current
entering the site normalized to the maximum critical curredit, and R;; is the shunt
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resistance of the junction. In genera;; includes the contributions of both the external
and the internal magnetic fields:

27 )
Aij = / (@ext + Qing) dr (2)
Qo Ji

wherea is the vector potential, andl, the flux quantum. In this paper the external magnetic
field is set to zero, and,; is entirely due to the currents circulating in the array){(

1
Ajj = ZliFFij:klikl‘ 3
3

4]'[)\,J_

Here F F is the inductance matrix [11] and, the penetration depth of the magnetic field
normalized to the lattice spacing i.e. [12]
1 &
© 21 uol.a
A detailed description of the numerical algorithm is given in [13].

It is worthwhile noting that, since the knots of the array are represented by point grains,
the fluxoid quantization is automatically fulfilled:

2

Zeij + ¢%;(fmt) = 2n,m. )

AL 4)

Ijea

> ijee Stands for the anticlockwise sum along the links of thelaquette and);; is
the gauge-invariant phase along the liigk—restricted to the interval—xn, x]-. [/ =
> ijee Aij is the total flux through the cell.

The ladder is biased with an external d.c. current, parallel toytagis, i.,, = is,
that is injected at the top of the array & (N, — 1)/2), and extracted at the bottom
(y = —(N, — 1)/2). Time is measured in units of the adimensional quantity, with
T = E/(ZGILR,,)

The creation of a single vortex is achieved through the temporary breaking of a link
at the border of the ladder: the current surrounds the defect and induces an excess of
vorticity in the rightmost plaquette leading to the vortex formation. After its creation, the
vortex, subjected to the Lorentz force, moves along the array. This is a quite different
experimental procedure from those adopted previously in reference [14], where the authors
put the emphasis on the effects of various types of defect on the vortex dynamics.

3. Dynamical properties

Figure 1 shows different examples of vortex trajectories. We identify the position of the
vortex with that of its centre, i.e. the cell with vorticity, = 1 (see equation (5)). This is
why in figure 1 the position of the vortex assumes discrete values.

We define the cell-average velocityx) as Y Ty, whereTy is the time that the vortex
spends in cellV; it is trivially related to the instantaneous velocity(x), v(x) = (v;(¢))n,
where
tN+1

(WO = a/(tys1 — ty) = ( / vi (1) dr) [ iz = ).

N

A comparison between figures 1 and figures 2, where we have reported some examples
of vortex profiles, clearly suggests a direct relation between the velocity and the spatial
extension of the vortex.
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Figure 1. Examples of vortex trajectories: (a) as a function of the lattice size (we compare the
motion of a vortex in a 32 2 cell ladder and in a 3232 array); (b) as a function of the magnetic
penetration depth | for a 32x 2 cell ladder. Time is measured in units of= h/(2el.R;}),

andx in units of the lattice spacing. iy, = 0.90 .

In a ladder (an array witlv, x 2 sites), the transverse extension of the vortex is limited
to a, the cell dimension, and this also affects its extension along theis. In a large 2D
array, however, this constraint does not exist and the degree of localization of the vortex
depends on.; . In anN, x N, array, the radius of the vortex is a function of the length of
the smallest side of the array (see figure 2(a)), and of theand A | -values (figure 2(b)).

The shape of the(x) curve depends on the ratio of the vortex extension and the array
size (see figure 3(a)): the vortex, created at the border of the array, initially accelerates
until it is at a distance from the border greater than its extension. At this point it reaches a
steady cell-average velocity v is no longer sensitive to the position and remains constant.
When the vortex approaches the opposite border of the array, it accelerates again. In figure
3(a) we have fixed the smallest dimension of the arrdy,= 32. Thus the three curves
correspond to vortices with the same extension. We note that the velocities at the centres of
the array are basically the same in the three cases. If we redugigure 3(b)) thev(x)
curve flattens, and the steady velocity decreases.

In figure 4 we report the steady velocity as a function gffor different values of.
in a 128x 32 array. The smaller the vortex is, the lower its velocity is. An explanation of
this behaviour will be provided below.

The motion of a vortex in a JJA can be nicely described in terms of that of a particle
subjected to a given potentil. Let us analyse in detail the functional form of this potential
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Figure 2. (a) The shape of a moving vortex as a function of the transverse size of the array for
32x Ny arrays (V, = 2 (@), 4 (2), 8 (0), 16 (x) and 32 {)). (b) The shape of a moving
vortex as a function of; in a 32x 32 array.1; = oo (@), 10(x), 1 (0) and 1/2 ¢). The
smallest dimension of the array determines the vortex extension. We plot the values of the mesh
currents along the central row of the array (the vortex moves from right to left).

and its dependence on the array parameters.
The Gibbs energy of a certain phase configuration of a Josephson junction array is given
by the following expression:

U= Ziext;i¢i - Zcos¢ - ¢j - A[j)
i ij

(if the screening effects are not negligible, then it is necessary to consider also the magnetic
energy term:%ii_jl‘i_j;klikl).

If we restrict ourselves to the study of the single-vortex dynamics, then we can identify
V with U.

U can be decomposed into five terms [15]: the core enétgy 72/2, defined as half
the energy needed to create a vortex—antivortex pair; the energy of the vortex in the absence
of a magnetic field and of external currerifg(x); the energies due to the interaction with
the external field and with the bias currebi; (x) and U;(x); and the term that accounts
for the periodicity of the laddert/,,, (x). Strictly speakingl/ depends also on the vertical
coordinate,y. In this paper, however, we will not study this dependence: we consider the
case of a vortex that moves along the central row of the airay 0). Both the coordinates
x andy are given in units normalized to the cell dimensian,

The analytical expressions féf; (x), Us(x), andU,,, (x) in terms ofil./(2¢) are given
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Figure 3. (a) v(n) for N, x 32 arrays §V, = 32 (»), 64 (), 128 @)). A, = oo, andiy. = 0.90.

The value ofv(0) is apparently the same in all cases. {lo}) for square 32« N, arrays {V,

=2 (n), 4 (O), 8 (®) and 32 ()). The smallest dimension of the array determines the vortex
extension and, thus, the profile and the steady value of the velocity.

respectively by

Ui(x) = —2ri(x + L/2) (6)
722 x\?
v =-"r(1-4(7)) 0
and
Upor (x) = —%EB cos2rx). (8)

L is the array dimension of the direction perpendicular to that of the bias current normalized
to the cell dimensiong, and Ep is the energy barrier that the vortex must overcome to
move from one cell to the next one. We fixed the origin of the coordinates,0, at the
central column of the array.

We have checked that thig.-dependence of/ is perfectly described by equation (6),
independently of the size of the array and of the value. of Indeed, in figure 5(a) we
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Figure 4. The steady vortex velocityy, versusi,. for different values of . : oo (@), 2 (0),
1 (A), 1/2 (O). Comparison is made with the results obtained for a ladder in the absence of
inductance (continuous line).

show that/ U (x) dx fits very well to the expressior2ri,.L, independently of the array
parameters.

The functional form ofUy(x) strongly depends on the vortex shape. For the case of a
large 2D array, in the absence of inductive effects, it is given by

Upx)=m In(j’rL2 cos<7TLx)). 9)

Things change if the vortex extension is constrained by any means (a reduced size of the
array, a small.,, etc). In order to check the spatial dependencd/gfwe have placed

a vortex on different cells of the central row of the array. We have first initialized the
phases to the expression argign— yo)/(x — xp)) and then let the system relax to the
equilibrium configuration. In this way we place the vortex in the successive potential wells
described by (8). Near the border, the slopdJgfis so steep that a vortex is not a stable
static configuration. We have compared thégéx) values with the curvé/ + 2ri,.x (the
continuous curve has been derived by fitting the discrete points) for 32 and 48x 32

arrays. The results are shown in figure 5(b).

The effect of the array inductance is double. On one hand, it reduces the vortex
energy (since the induced magnetic field tends to compensate the external one, the effective
frustration decreases and so does the energy); on the other it modifies the energy profile,
which gets flatter (this is because wheén grows, the vortex extension decreasés;
becomes insensitive to the vortex position at a distance from the border greater than its
radius).

A study of U (x) + 2mis.x permits the determination dfz from the spatial oscillations
of the potential (see figure 5(b)). The results are shown in figure 6. A comparison is
made with theEgz-values worked out for the case of a ladder; these latter turn out to be
appreciably higher.

An intuitive argument explaining this behaviour is the following: if the vortex is strongly
localized, the motion from one cell to the adjacent one implies a dramatic shift of all of the
phases (especially of those along the links close to the plaquettes involved), and a higher
energy is required in order to move the vortex.

It is worthwhile noting that the dynamical energy barrier is quite different from its
statical value. In absence of inductance effects we hayeéstatio = 0.2 [16]. Phillips
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Figure 5. (a) fU/(indc) dx during the vortex propagation: i: 1616,A, = 1, iy. = 0.75;

i 128 x 32, A, = o0, ige = 0.75; iii. 64 x 2 ladder,A;, = oo, ig. = 0.7. It turns out
that, independently of the size and the inductance of the array, the dominant compoient of
is 2migex. (b) Up(x) in a 32x 32 array, for different values of ;: 1/2 (v), 1 (0), 2 (»), 32

(x), and 64 Q). We compare these values with those obtained fox 32 and 48x 32 arrays
with A; = oo (@). The continuous lines shoW + 27i,.x for a vortex moving in 3% 32 and

48 x 32 arrays in the absence of inductance.

et al have generalized this result taking into account the screening effects: the energy barrier
grows asi, decreases, and for exampi& (static A, = 1) ~ 0.4 [1]. These values are
appreciably different from the values extrapolated from our curves for 0. The difference
between the dynamical and static values of the barrier energy can be qualitatively explained
as follows: while the vortex is moving, the phase configuration does not have time to relax,
and thus the dynamicdl z-results are greater than the static one. In addition, one has also
to consider the extra contribution due to the energy supplied by the external current (we
recall that the supplied power 5. i;(ext) d¢;/dr); note that the Josephson energy, the
externally supplied energy, and the magnetic energy all have their maxima when the vortex
is located between two cells, so they all contribute with the same sign to the high value of
Ep.

Let us now show how the vortex velocity can be derived from the potebtidh this
paper we consider the zero-capacitance limit (the underdamped case), i.e. massless vortices.
In consequence, the total force acting on the vortex is null, and

aU (x)
0x

= —nv(x) (10)
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Figure 6. (a) Ep versusv. These values have been obtained by calculating Bgthand v
for different values ofs.. 11 = oo (@), 2 (0), 1 (4), 1/2 (O). Comparison is made with the
results obtained in a ladder in the absence of inductance (continuous line).

whereU andv are, respectively, the potential acting on the vortex and its velocity. Let us
briefly recall hown can be calculated [17]: the power dissipated through all of the resistances
of the array because of the vortex motion is givenWy,,, = Zij ViE/Rij (we recall that,

due to the energy conservatioByiss = — Y _; iexri®i + Z,.j cod¢p — ¢; — A;j) = —U); of
courseW,;,s = dEg,/dt. We can define a damping coefficiemtthrough nv? = Wy;g,.

Let us focus our attention on the displacement of the vortex from a cell to the adjacent one,
separated by a linkj. The phase of the link shifts by in a timedr = a/v, wherev is

the vortex velocity. IfR.,.;v iS the equivalent resistance of the circuit between the points

i and j, the damping coefficient is given by

n= (b%/(4azRequiv)~ (11)

In the case of a large 2D array where all the resistaRgeare equal, one ha®, .., = R;;/2.
In general,R.,.i, is roughly defined by the dimension of the sub-array ‘occupied’ by the
vortex, and it is thus dependent on the extension of this latter.
From (10) it is straightforward to obtain the instant vortex veloeit), in the case of
no array inductance:

1 2 .
v=—|2mi4 + T tan ™ wEgsin2rx) ). (12)
no Nx Nx

Hereno is an adimensional quantity, relateditdoy n = no®3/(4n2aR;;).

Now we can qualitatively explain the dependence of the steaatythe array size. Near
the centre—or, in rectangular arrays, far enough from the border—the spatial derivative of
Uo(x) can be neglected; as the integral of @sx) along a plaquette is zero, the main
contribution to the cell-average velocity comes from theterm, and does not depend on
any other parameter. The larger the array is, the greater the equivalent resistance bgcomes:
decreases and thus the velocity increases. In an analogous way we can explain the decrease
of v with an increasing., : a low value ofx, implies a strong localization of the vortex,
and thus a smalR.,;. .
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4. The vortex cascade

The control of the single-vortex propagation through the array is quite relevant for any
practical applications. This is not always possible in the case of a 2D array: indeed the
perturbation due to the presence and to the motion of the vortex may induce the creation of
extra vortices/antivortices. This happens in arrays with more than one row of plaquettes.
When the vortex (antivortex) is close enough to the border of the array it can induce the
formation of antivortices (vortices), either in the row along which it is moving, or in the
adjacent ones. This has been observed for bias currents greater than a threshold value,
which is lower than the critical current of the arrgy = 1.

The process is illustrated in figure 7: mt 0 a vortex (black circle) is created in the
central row of the array (row 0). The Lorentz force due to the bias current (we recall that
the d.c. current is injected into the upper sites, and extracted from the lowest ones) makes
the vortex move toward the left-hand border. At 38z, when the vortex is near the
border, it induces the formation of three antivortices (open circles) in rows 0, +-and
that begin to move to the right. The central antivortex annihilates with the original vortex;
the other two, when approaching the opposite edge, induce the formation of new vortices,
and so on. The energy of the system shows a peak whenever an annihilation occurs.

The extra vortex/antivortex creation process spreads from one row to the adjacent
ones affecting, finally, the whole array. The result is that different rows exhibit a well-
defined alternate vorticity (see figure 8, where we report the time-average number of
vortices/antivortices in the array rows). This dynamical state, called alternate-vortex motion,
has been recently observed by thébihgen group [9] and confirmed by the numerical
simulation of Hagenaarst al [18]. In their experiments, Lachenmarm al [9] scanned
the sample with an electron beam; thus all of the links were perturbed. Our simulations
show that, in order to unleash the process that leads to the AVM, it is enough to operate
a perturbation on just one link of the array and wait for the appearance of the first free
vortex. Once the free vortex has been created, provided that the bias current is higher than
a certain critical value, the system, on its own, evolves towards the AVM.

5. Conclusions

In conclusion we have studied in detail the vortex transmission in 2D arrays of
superconducting junctions. Dynamical variables such as the velogityhe damping
coefficient,n, and the dynamical energy barrigfz, have been worked out as functions of
the bias current, the magnetic penetration depth, the vortex position, and the extension.
The size of the system is a fundamental variable that deeply influences the vortex motion.
In a previous work [13] we have studied the vortex dynamics in a ladder, an array
consisting of a single row of plaquettes. In that case, the small transverse length of the
system constrained the vortex to be strongly localized. In 2D arrays, in contrast, the
extension of the vortex is much larger.

(i) As a consequence the number of links affected by the vortex motion increases,
and so does the equivalent resistance of the syskem;,, leading to a smaller damping
coefficient,n. Since the dominant term &f depends just ofy. (and it is independent from
the lattice size), the vortex velocity increases with its size.

(i) The more extended the vortex, the smoother the shift of the gauge-invariant phases
as the vortex moves from cell to cell; this implies a decreasing of the energy barrier.

(iif) The spatial distribution of the different variables (velocity, energy,) is also
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Figure 7. (a) The starting point of a vortex cascade. tAt 0 we inject a vortex in the central
row of a 16x 16 array, withA; = 1 andi,. = 0.9, and leave the system to evolve on its own.
The energy, the curve in (b), shows peaks whenever a vortex—antivortex annihilation occurs.
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Figure 8. The time-average number of moving vorticd)(and antivortices{): rows with the
dominant presence of vortices and antivortices alternate. We note that, for rows far from the
central one, the average number of vortices/antivortices decays.

affected by the vortex extension: at distances from the border of the array greater than the
extension, these variables are quite insensitive to the vortex position; however, near the
borders, the slope dff gets steeper, causing the vortex to accelerate.

In addition:

(iv) we have shown that and Ez depend not only on the size of the array, but also on
the bias current and on the penetration depth of the array; indesat E5 are respectively
increasing and decreasing functionsigfand i ;

(v) we have illustrated the development of the vortex cascade process; the sufficient
conditions for this are: an array with more than one row, and a high enough bias current.
We stress that the vortex cascade can be unleashed by the injection of a single vortex.

Hence our conclusions are as follows.

(a) We remark that the study of the single-vortex dynamics, besides its interest as
a theoretical problem, is relevant for practical implementations of arrays of Josephson
junctions. In particular, most of the cryoelectronics devices are based upon the use of
vortices or antivortices as travelling information quanta. Our dynamical results may be
relevant for the design of such devices, as regards predicting their technical features
(e.g. the velocity of transport of the signals), and stressing their drawbacks, such as the
vortex/antivortex cascade. Processes like this latter may prevent the use of large 2D arrays
in such applications.

(b) We stress that variables suchw@a®r Ep are measurable quantities, so our results
could be, in principle, experimentally checked by means of, e.g., low-temperature scanning
electron microscopy (LTSEM) [9]. This technique allows one to measure time-averaged
voltage fluctuations AV) with a high spatial resolution.AV (x) can be related to the
vortex/antivortex velocity at celk. On the other hand, from the spatial variation of the
velocity v(x) it is possible to extract the value @&. The ‘vortex cascade’ process should
also be easily observed.

Acknowledgment

J C Ciria acknowledges a post-doctoral grant provided by the MEC (Spain).



Single-vortex dynamics in Josephson arrays 2583

References

(1]

(2]

(3]

(4]

(5]

6]
(7

(8]

El
(10]
(11]
(12]
(13]
(14]
(18]
[16]

(17]
(18]

Nakajima K and Sawada Y 1981 Appl. Phys52 5732

Majhofer A, Wolf T and Dieterich W 199Phys. RevB 44 9634

Dominguez D and J&J V 1992Phys. Rev. Lett9 514

Phillips J R, van der ZarH S J,White J and Orland T P 1993Phys. RevB 47 5219

For a recent view on the state-of-the-art see, e.g.,

Giovannella C and Tinkham M (ed) 1999acroscopic Quantum Phenomena and Coherence in Super-
conducting Network¢Singapore: World Scientific)

See, e.g.,

Pederse N F and Usting A V 1995 Supercond. Sci. Techn@.389

Nordman J E 1995Supercond. Sci. Techn@.681

See, e.g.,

Ustinov A V 1995 Macroscopic Quantum Phenomena and Coherence in Superconducting Netudofks
Giovannella and M Tinkham (Singapore: World Scientific) p 253

Likharev K K and Semene V K 1991 IEEE Trans. Appl. Supercond.3

Nakajima K, Mizusawa H, Sugahara H and Sawada Y 14HE Trans. Appl. Supercond. 29

Berman D, van der ZarH S J,Orlanc T P and Del K A 1994 |[EEE Trans. Appl. Supercond.1051

Ciria J C, Pacetti P, Paoluzi L and Giovannella C 19@6cl. Instrum. Method870 128

Giovannella C, Fontana A and Cikmach P 199agnetic Susceptibility of Superconductors and other Spin
System®&d R A Hein T L Francavilla ad D H Liebenberg (New York: Plenum) p 455

Zharg Z M and Frenkel A 1994. Supercond?7 871

See, e.g.,

Mizugaki Y, Nakajima K, Sawada Y and Yamashita T 1993pl. Phys. Lett62 762 and references therein

Lachenmann S G, Doderer T, Hoffmann D, Huebener R P,iBoA A andBenz S P 199#hys. RevB 50
3158

Mon K K and Teitel S 198%hys. Rev. Let62 673

Chung J S, Le K H and Stroud D 198®hys. RevB 40 6570

Sheng S R 1985J. Phys. C: Solid State Phy$8 5163

Nuvoli A, Giannelli A, Ciria J C and Giovannella C 199duovo Cimentd 6 2045

Orlando T P, ModiJ E and van der Zant H S1991Phys. RevB 4310218

Ciria J C and Giovannella C 1996 Phys. C: Solid State Phy40 7463

Cai Y, Leah P L and Yu Z 1994Phys. RevB 49 4015

Pacetti P, Cih J C and Giovannella C 1994uovo Cimentd 6 2039

See, e.g.,

Van der Zant H S JRijken H A and Mooj J E 1983J. Low Temp. Phy27 150

Lobb C J, Abrahen D W and Tinkham M 198%hys. RevB 27 150

Rzchowski M S, Benz S P, Tinkham M and Lol J 1990Phys. RevB 42 2041

Hagenaars T J, van Himbergen J E, Tiesirfg H E, Jo&8 J V and LachenmanS G 1995Macroscopic
Quantum Phenomena and Coherence in Superconducting Netedrks Giovannella and M Tinkham
(Singapore: World Scientific) p 329



